GLOMUS ETUNICATUM ROOT INOCULATION AND FOLIAR APPLICATION OF ACETYL SALICYLIC ACID INDUCED NACL TOLERANCE BY REGULATION OF NAC1 & LeNHX1 GENE EXPRESSION AND IMPROVED PHOTOSYNTHETIC PERFORMANCE IN TOMATO SEEDLINGS
نویسندگان
چکیده
Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NAC1) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations.
منابع مشابه
Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance.
The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of ...
متن کاملCharacterization of Genotypes and Phenotypes of Antibiotic Resistance in Enterobacteriaceae Isolates from Retail Meat Products
Application of Polyacrylamide to Enhance Silt Fence Performance Jeyarathan Arjunan, Sandeep Yeri, Dr. Ellen W. Stevens, Dr. Bill J. Barfield, and Dr. Khaled A.M. Gasem Department of Chemical Engineering Oklahoma State University Presentation Subject Area: Physical Sciences & Technology Conventional barrier methods of erosion control, in particular silt fence, have demonstrated poor performance ...
متن کاملGains from diversification on convex combinations: A majorization and stochastic dominance approach
By incorporating both majorization theory and stochastic dominance theory, this paper presents a general theory and a unifying framework for determining the diversification preferences of risk-averse investors and conditions under which they would unanimously judge a particular asset to be superior. In particular, we develop a theory for comparing the preferences of different convex combination...
متن کاملImproved immunogenicity of tetanus toxoid by Brucella abortus S19 LPS adjuvant.
BACKGROUND Adjuvants are used to increase the immunogenicity of new generation vaccines, especially those based on recombinant proteins. Despite immunostimulatory properties, the use of bacterial lipopolysaccharide (LPS) as an adjuvant has been hampered due to its toxicity and pyrogenicity. Brucella abortus LPS is less toxic and has no pyrogenic properties compared to LPS from other gram negati...
متن کاملSteady electrodiffusion in hydrogel-colloid composites: macroscale properties from microscale electrokinetics.
A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly d...
متن کامل